previous view

PTFE Glass Mos Compound preferred for parts and components requiring very good mechanical properties.

This material offers an excellent combination of properties Typical of the PTFE fluoropolymer resins:

- Service Temperature: offers excellent resistance to continuous service temperatures working conditions from -100° C (-148°F) up to 250°C (482°F) and, for limited periods, even to higher temperatures; product's low temperature resistance allows satisfactory performance down to -200°C (-328°F).
- Chemical resistance: offers high inertness towards nearly all known chemicals. Only attacked elemental alkali metals, chlorine trifluoride and elemental fluorine at high temperature and pressures might affect properties. Glass fibres is chemically inert with the exception of its reactivity with hydrofluoric acid and strong bases.
- Solvents resistance: offers insoluble properties in all solvents up to temperatures as high as 300° C (572° F).
 Certain highly fluorinated oils only swell and dissolve PTFE at temperatures close to the crystalline melting point.
- Secondary Filler: contains, in addition to glass fiber, a small amount of MoS2 which further increases hardness and wear resistance of PTFE and decreases friction.

PTFE Glass Mos Compound enhances some characteristics of virgin PTFE such as wear, compression strength, deformation under load, cold creep, thermal conductivity and dimensional stability.

Properties

- Improved thermal dimensional stability
- Excellent chemical stability
- Improved creep resistance
- Excellent electrical insulating properties
- · Improved compression strength
- Reduced friction & wear; Low friction behaviour
- Exceptional temperature resistance
- Improved surface hardness

Main applications

PTFE Glass Mos Compound offers excellent properties in the chemical processing, in automotive industries, in sealing application and in mechanical applications in general for bushing, sliding pads, and for slide ways for machine tools.

High wear, abrasion resistance and good wear compression properties are suitable for the majority of dry bearing applications against hard countersurfaces.

PTFE Glass Mos Compound is commonly used filler for dynamic seal applications where both rotating and alternating movements are involved, pneumatic, hydraulic and mechanical parts, valve seats, gaskets, pneumatic, compressors, appliances, insulators hydraulic and mechanical parts

PTFE

F1-25 data sheet

previous view

□ 15% GLASS + 5% MOS2 (80% VIRGIN PTFE+15% GLASS FIBRES+5% MOS2)

	1
C O L O R	MATERIAL

Property		Method	Units	Specification
Physical	Color	-	-	Blue - grey
	Specific gravity	ASTM D792	g/cm ³	2,250 - 2,300
	Water absorption	ASTM D570	%	0,05
	Flamability	UL 94		V-0
Mechanical	Tensile strength	ASTM D4745	MPa	≥ 18
	Elongation	ASTM D4745	%	≥ 200
	Hardness	ASTM D2240	Shore D	≥ 58
	Ball Hardness	ASTM D785	MPa	≥ 25
	Deformation under load (140 Kg/cm2 for 24 hrs. At 23° C)	ASTM D621	%	11 – 13
	Permanent deformation (after 24 hrs. Relaxation at 23° C)	ASTM D621	%	5,5 – 7,5
	Coefficient of static friction	ASTM D1894		0,12-0,25
	Coefficient of dynamic friction	ASTM D1894		0.08 - 0.12
	Wear coefficient	-	<u>cm³ min 10</u> -8 Kg m h	15 - 25
Thermal	Thermal conductivity	ASTM C177	W/ m*K	0,34
	Coefficient of linear thermal expansion From 25 to 100 °C	ASTM D696	10 ⁻⁵ / °C	9 - 13
Electrical	Volume resistivity	ASTM D257	Ohm*cm	10 15
	Surface resistivity	ASTM D257	Ohm	10 14

